齊次坐標(biāo)就是將一個(gè)原本是n維的向量用一個(gè)n加1維向量來(lái)表示,是指一個(gè)用于投影幾何里的坐標(biāo)系統(tǒng),如同用于歐氏幾何里的笛卡兒坐標(biāo)一般。
齊次坐標(biāo)在電腦圖形內(nèi)無(wú)處不在,因?yàn)樵撟鴺?biāo)允許平移、旋轉(zhuǎn)、縮放及透視投影等可表示為矩陣與向量相乘的一般向量運(yùn)算。依據(jù)鏈?zhǔn)椒▌t,任何此類(lèi)運(yùn)算的序列均可相乘為單一個(gè)矩陣,從而實(shí)現(xiàn)簡(jiǎn)單且有效之處理。與此相反,若使用笛卡兒坐標(biāo),平移及透視投影不能表示成矩陣相乘,雖然其他的運(yùn)算可以?,F(xiàn)在的OpenGL及Direct3D圖形卡均利用齊次坐標(biāo)的優(yōu)點(diǎn),以具4個(gè)暫存器的向量處理器來(lái)實(shí)作頂點(diǎn)著色引擎。