英國(guó)人卡文迪許利用扭秤,才巧妙地測(cè)出了這個(gè)常量。這個(gè)扭秤的主要部分是這樣一個(gè)T字形輕而結(jié)實(shí)的框架,把這個(gè)T形架倒掛在一根石英絲下。現(xiàn)在在T形架的兩端各固定一個(gè)小球,再在每個(gè)小球的附近各放一個(gè)大球,大小兩個(gè)球間的距離是可以較容易測(cè)定的。根據(jù)萬(wàn)有引力定律,大球會(huì)對(duì)小球產(chǎn)生引力,T形架會(huì)隨之扭轉(zhuǎn),只要測(cè)出其扭轉(zhuǎn)的角度,就可以測(cè)出引力的大小。當(dāng)然由于引力很小,這個(gè)扭轉(zhuǎn)的角度會(huì)很小。怎樣才能把這個(gè)角度測(cè)出來(lái)呢?卡文迪許在T形架上裝了一面小鏡子,用一束光射向鏡子,經(jīng)鏡子反射后的光射向遠(yuǎn)處的刻度尺,當(dāng)鏡子與T形架一起發(fā)生一個(gè)很小的轉(zhuǎn)動(dòng)時(shí),刻度尺上的光斑會(huì)發(fā)生較大的移動(dòng)。這樣,就起到一個(gè)化小為大的效果,通過(guò)測(cè)定光斑的移動(dòng),測(cè)定了T形架在放置大球前后扭轉(zhuǎn)的角度,從而測(cè)定了此時(shí)大球?qū)π∏虻囊Α?ㄎ牡显S用此扭秤驗(yàn)證了牛頓萬(wàn)有引力定律,并測(cè)定出引力常量G的數(shù)值。